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3 Complex manifolds

3.1 Complex manifolds

We will now introduce complex manifolds and discuss when an almost complex manifold is

complex. Let us start by defining a complex manifold.

Definition: A complex manifold is a differentiable manifold of even dimension m =

2n with an atlas of charts to open subset of Cn such that the transition functions are

holomorphic. The complex dimension of the complex manifold is then n.

That is to say, a complex manifold can be covered by open sets Ui such that each open set Ui

has a coordinate map zi : Ui −→ Cn to an open subset of Cn. On each non-trivial intersection

Ui ∩ Uj 6= ∅, the transition functions zi · z−1
j : Cn −→ Cn are holomorphic. Heuristically, this

definition says that in a small enough region a complex manifold “looks” (holomorphically) like

C.

The fact that the transition functions must be holomorphic is the key property of complex

manifolds. Let us consider some examples to get a feel for the definition.

Example 3.1: The two-sphere S2, defined by the embedding in R3 given by

x2 + y2 + z2 = 1 , (3.1)

is a complex manifold. Let us use stereographic projection from the North Pole to R2 as a

coordinate chart (X,Y ):

(X,Y ) =

(
x

1− z
,

y

1− z

)
. (3.2)

This covers all points on the sphere except for the North Pole itself which corresponds to z = 1.

Thus, we introduce a second chart, which is a stereographic projection from the South Pole:

(U, V ) =

(
x

1 + z
,

y

1 + z

)
. (3.3)
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This similarly covers all points except for the South Pole (z = −1). In both these coordinate

patches we can introduce complex coordinates (so as to map to C1) by defining

Z = X + iY , Z̄ = X − iY , W = U − iV , W̄ = U + iV . (3.4)

On the overlap between of our two coordinate patches, i.e. z 6= ±1, we find that

W =
1

Z
. (3.5)

This is the transition function between the coordinate patches and is holomorphic. Its inverse is

clearly holomorphic as well. Hence S2 is a complex manifold which can be identified with C∪∞,

just as a real manifold S2 can be identified with R2 ∪∞.

Example 3.2: The complex projective space CPN (as explained in the note below) is a complex

manifold of complex dimension N . We can see this as follows.

Let us construct an atlas on CPN . Let za, a = 1, . . . N + 1 be complex coordinates on CN+1.

Then on each patch

Ui =
{
za, a = 1, . . . , N + 1 | zi 6= 0

}
, (3.6)

i.e. the region where zi 6= 0, define the inhomogeneous coordinates

ξa[i] =
za

zi
. (3.7)

The set of inhomogeneous coordinates ξa[i] cover the whole of CPN since the origin of CN+1 is

not included the definition. On the overlap of two patches
(
Ui, ξ

a
[i]

)
∩
(
Uj , ξ

a
[j]

)
, we find

ξa[j] =
za

zk
zk

zj
=
ξa[k]

ξj[k]

, (3.8)

which is holomorphic. Hence the transition functions are holomorphic and the manifold is com-

plex.
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Complex projective spaces

The complex projective space will form an important example throughout these lec-

tures. We can construct CPN as a quotient of CN+1 as follows. Consider CN+1\{0}, i.e.

with the origin removed. This is characterised by N + 1 complex numbers z1, . . . , zN+1

where not all za = 0 simultaneously (here a = 1, . . . N + 1). To obtain CPN we quotient

this space by the equivalence relation

(
z1, . . . , zN+1

)
∼ λ

(
z1, . . . zN+1

)
, ∀λ ∈ C . (3.9)

Any point in CN+1\{0} defines a (complex) line from the origin through that point

and in CPN we identify all points along this line. We can visualise this much better

for the real projective space RPN which is similarly defined as RN+1\{0} and with the

equivalence as before but λ ∈ R. Thus, RPN really is the space of lines through the

origin of RN+1.

The numbers za are often called homogeneous coordinates of CPN even though they

are not coordinates! A common set of coordinates, the so-called inhomogeneous coor-

dinates, are constructed as follows: If we are in a region of CPN where zi is non-zero,

we define the i-th coordinate system by rescaling the homogeneous coordinates by zi:

ξa[i] =
za

zi
. (3.10)

These are invariant under the equivalence relation (3.9) and so define a set of coordinates

in the region where zi 6= 0. Since ξi[i] = 1 there are only N independent coordinates,

meaning that CPN is of complex dimension N . We can construct an atlas on CPN from

these coordinate patches by using the coordinates ξa[i] in the regions

Ui =
{
za = 1, . . . , n+ 1 | zi 6= 0

}
. (3.11)

Finally, note that we can use the scaling symmetry (3.9) to set

|z1|2+ . . .+ |zN+1|2= 1 , (3.12)

which is the equation for a S2N+1. This fixes the real scaling symmetry in (3.9) but not

the phase rotation. Thus, we can write

CPN ' S2N+1/U(1) . (3.13)
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Weighted projective spaces

Let us mention a generalisation of projective spaces, known as the weigthed projective

space. We define WPN[w1,...,wn+1] by starting as before with CN+1\{0} but identifying

points according to the equivalence relation

(
z1, . . . , zN+1

)
∼

(
λw1z1, λw2z2, . . . , λwN+1zN+1

)
, ∀λ ∈ C . (3.14)

Exercise 3.1: Show that the weighted projective space WPN is a complex manifold of

complex dimension N .

Theorem 3.1: Complex manifolds are almost complex.

Proof: This proof relies on the crucial property that complex manifolds have holomorphic

transition functions. First of all, let us consider an open neighbourhood U ∈ M with complex

coordinate chart (U, z) and define there a rank (1,1) tensor J as follows:

J
∂

∂za
= i

∂

∂za
, J

∂

∂z̄a
= −i ∂

∂z̄a
, (3.15)

where za, z̄a are the complex coordinates on U . From the definition above it is clear that

J2 = −I. The definition (3.15) is just the same as saying that in local coordinates we have the

canonical form of the almost complex structure met in the previous chapter:

J = i
∂

∂za
⊗ dza − i ∂

∂z̄a
⊗ dz̄a . (3.16)

This defines an almost complex structure in a coordinate patch. We have to now show that

the almost complex structure exists globally. This is where the holomorphicity of the transition

functions is crucial. Consider an overlap between two coordinate patches (U, z)∩(V,w). Because

the transition functions are holomorphic we know that

za = za (w) . (3.17)

Thus, we can calculate how the tensor J transforms between the coordinate patches. Consider

∂

∂za
⊗ dza =

∂wb

∂za
∂

∂wb
⊗ ∂za

∂wc
dwc =

∂

∂wa
⊗ dwa , (3.18)

and similarly
∂

∂z̄a
⊗ dz̄a =

∂

∂w̄a
⊗ dw̄a . (3.19)

Thus, we see that J is globally well-defined and in particular has the same form in all coordinate
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patches and hence is constant throughout M . This completes the proof.

Note that we will write the components of J in terms of the complex coordinates as

Ja
b = i , Jā

b̄ = −i , Ja
b̄ = Jā

b = 0 , (3.20)

where

J = Jb
a ∂

∂za
⊗ dzb + Jb̄

a ∂

∂z̄a
⊗ dzb + Jb

ā ∂

∂za
⊗ dz̄b + Jb̄

ā ∂

∂z̄a
⊗ dz̄b . (3.21)

In a complex (coordinate) basis, the matrix components Jµν are not necessarily real. Let us get

more familiar with these with two exercises.

Exercise 3.2: Let us write a vector X in a local complex coordinate basis X = Xµ ∂
∂µ

=

Xa ∂
∂za +X ā ∂

∂z̄a . Show that for X to be real implies

X ā = Xa . (3.22)

Exercise 3.3: Let us write a general rank (1, 1) tensor J in a local complex coordinate

basis as in (3.21). Show that for J to be real implies

J āb̄ = Jab , J āb = Jab̄ . (3.23)

We have just shown that any complex manifold is almost complex. However, the opposite

is not necessarily true. The Newlander-Nirenberg Theorem governs which almost complex man-

ifolds are complex. Before we can understand that theorem, we first need a little bit more

machinery.

3.2 Integrable complex structures

Definition: Let (M,J) be an almost complex manifold. If the Lie bracket of any two

holomorphic vector fields is again a holomorphic vector field, then the almost complex

structure is said to be integrable. An integrable almost complex structure is also called

a complex structure.

This integrability requirement is actua.lly best expressed in terms of the Nijenhuis tensor

Definition: Let (M,J) be an almost complex manifold. Then for any two vector fields

X, Y ∈ Γ (TM) we define the Nijenhuis tensor N : TM ⊗ TM −→ TM as

N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] , (3.24)

where [X,Y ] denotes the usual Lie bracket on M .
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Exercise 3.4: Show that the Nijenhuis tensor can be written in local coordinate as

Nµν
ρ = (∂µJν

σ) Jσ
ρ − Jσµ (∂σJν

ρ)− (∂νJµ
σ) Jσ

ρ + Jσν (∂σJµ
ρ) . (3.25)

The definition (3.24) is written in terms of tensors and hence is manifestly coordinate in-

variant. The local coordinate expression (3.25), however, has lost that manifest diffeomorphism

invariance. Let us restore this be rewriting the expression in terms of covariant derivatives.

Exercise 3.5: Rewrite (3.25) as

Nµν
ρ = 2Jµ

σ∂[νJσ]
ρ − 2Jν

σ∂[µJσ]
ρ , (3.26)

and hence show that it can be written in terms of covariant derivatives

Nµν
ρ = 2Jµ

σ∇[νJσ]
ρ − 2Jν

σ∇[µJσ]
ρ . (3.27)

Theorem 3.2: Let (M,J) be an almost complex manifold. The almost complex structure

J is integrable if and only if N(X,Y ) = 0 for any two vector fields X, Y ∈ Γ (TM).

Proof: Firstly, let us extended the Nijenhuis to the complexified tangent bundle TMC. Let us

start by proving the “if” part of the theorem. Since N(X,Y ) = 0 for any two vector fields on

M , we can consider X and Y to be holomorphic vectors. Thus, we have

N(X,Y ) = [X,Y ] + iJ [X,Y ] + iJ [X,Y ] + [X,Y ] = 2 ([X,Y ] + iJ [X,Y ]) = 0 . (3.28)

This implies that

J [X,Y ] = i [X,Y ] , (3.29)

and hence that [X,Y ] is holomorphic. This proves the first half of the theorem.

Let us now consider the “only if” statement. We start with two arbitrary vector fields,

X,Y ∈ Γ (TM) which we can decompose into (anti-)holomorphic parts

X = X+ +X− , Y = Y + + Y − , (3.30)

where

JX± = ±iX± , JY ± = ±iY ± . (3.31)

By linearity (since N is a tensor field) we have

N(X,Y ) = N(X+, Y +) +N(X+, Y −) +N(X−, Y +) +N(X−, Y −) , (3.32)
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and it is easy to show that

N(X+, Y −) = 0 , N(X−, Y +) = 0 . (3.33)

As before we can show that

N(X+, Y +) = 2
([
X+, Y +

]
+ iJ

[
X+, Y +

])
, (3.34)

and by a similar calculation

N(X−, Y −) = 2
([
X−, Y −]− iJ [

X−, Y −]) . (3.35)

However, when J is integrable both of these expressions vanish and so N(X,Y ) = 0. This

completes the proof.

Exercise 3.6: Show that

N(X+, Y −) = 0 , (3.36)

for any holomorphic vector field X+ and anti-holomorphic vector field Y −.

Because the almost complex structure on a complex manifold is constant, we find that:

Corollary: The almost complex structure on a complex manifold is integrable.

(Newlander-Nirenberg) Theorem 3.3: Let (M,J) be an almost complex manifold.

If J is integrable, then (M,J) is a complex manifold.

Unfortunately, the proof is very involved and beyond the scope of these lectures. This theo-

rem gives us an alternative way of showing that a manifold is complex.

Note: Almost complex manifolds can admit several complex structures some of which may be

integrable and some not. Hence it is difficult to show that a manifold is not complex. If we can

find an almost complex structure, it is not enough to show that it is not integrable. There may

be another almost complex structure on the manifold that is integrable!

Let us use the Newlander-Nirenberg theorem to prove the following:

Theorem 3.4: Any orientable two-dimensional Riemann surface is complex.

Proof: In chapter 2, we proved that any orientable two-dimensional Riemann surface is almost

7



complex by explicitly constructing the almost complex structure

Jµ
ν = εµρg

ρν . (3.37)

It now remains to show that this almost complex structure is integrable. We do this by showing

the Nijenhuis tensor vanishes. First notice that in two dimensions

∂[µJν]
σ = εµνV

σ , (3.38)

where V σ = 1
2ε
µν∂µJν

σ. Using this result we find that

Jµ
σ∂[νJ

ρ
σ] = V ρgσλελµενσ (3.39)

is symmetric in µ and ν. Using the expression (3.26), this immediately implies that

Nµν
ρ = 0 . (3.40)

This completes the proof.

This is of course important for string theory, where the Euclidean worldsheet is a two-

dimensional oriented Riemann surface and hence a complex manifold.

3.3 Exterior derivatives of forms

In the previous chapter we discussed the exterior derivative of (p, q)-forms on almost complex

manifolds. We found that for a (p, q)-form ω

dω(p,q) = (λ1)
(p+2,q−1)

+ (λ2)
(p+1,q)

+ (λ3)
(p,q+1)

+ (λ4)
(p−1,q+2)

, (3.41)

where λ
(p+2,q−1)
1 and λ

(p−1,q+2)
4 were proportional to derivatives of the projection operators P±

(see Exercise 2.5). Thus, for a complex manifold where the complex structure J is constant,

λ
(p+2,q−1)
1 = λ

(p−1,q+2)
4 = 0. Hence, for a complex manifold

d = ∂ + ∂̄ . (3.42)

Exercise 3.7: By using d2 = 0, or otherwise, show that for a complex manifold

∂2 = ∂̄2 = 0 . (3.43)
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Exercise 3.8: Show that for an almost complex manifold the condition that ∂2 = 0 is

equivalent to the Nijenhuis tensor vanishing.

This is the starting point for Dolbeault cohomology which we will come to in a few chapter’s

time.
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