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6 Cohomology and homology

We are now in a position to state what a Calabi-Yau manifold is but we will delay this until the

final chapter in order to first introduce the tools of cohomology and homology. We will see that

these are extremely useful when studying Calabi-Yau manifolds and also in order to understand

the low-energy theories arising from compactifications on any internal manifold (or orbifold),

as we will make clear in the final chapter of this lecture series. Finally, cohomology has many

applications in theoretical physics, such as gauge theories or supersymmetry and so is useful in

its own right.

6.1 Cohomology

Let us begin by discussing cohomology. I will assume some familiarity with differential forms, in

particular integrating forms over manifolds but will introduce many of the concepts that we will

need.

Firstly, let us label by Ωp (M) the space of smooth p-forms. Let us define objects which

should be familiar from differential geometry.

Definition: Let M be a differentiable manifold. Then we define the exterior derivative

acting on p-forms as

d : Ωp (M) −→ Ωp+1 (M) . (6.1)

For a p-form ω, with components in local coordinates

ω =
1

p!
ωµ1...µp

dxµ1 ∧ . . . ∧ dxµp , (6.2)

we define the action of d by

dω =
1

p!
∂[µ1

ωµ2...µp+1]dx
µ1 ∧ . . . ∧ dxµp+1 . (6.3)
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Definition: A p-form ω ∈ Ωp (M) is called closed if it is in the kernel of d, i.e.

dω = 0 , (6.4)

and exact if it is the image of d, i.e. ∃ χ ∈ Ωp−1 (M) such that

ω = dχ . (6.5)

We denote by

Zp = {ωp | ωp ∈ Ωp (M) , dωp = 0} , (6.6)

the space of closed p-forms and by

Bp =
{
ωp | ωp ∈ Ωp (M) , ∃βp−1 ∈ Ωp−1 such that ωp = dβp−1

}
, (6.7)

the space of exact p-forms.

Definition: Let (M, g) be an n-dimensional oriented Riemannian manifold. Then we

define the Hodge dual acting on p-forms as

? : Ωp (M) −→ Ωn−p (M) . (6.8)

For a p-form ω, with components in local coordinates as in (6.2), we define ? as

? ω =
1

p! (n− p) !
εµ1...µpµp+1...µn

gµ1ν1 . . . gµpνpων1...νpdx
µp+1 ∧ . . . ∧ dxµn , (6.9)

where εµ1...µn
is the n-dimensional alternating tensor which takes values ±√g depending

on whether (µ1 . . . µn) is an even or odd permutation of (1 . . . n).

Note: The Hodge dual ? depends on the metric whereas the exterior derivative d does not!

Exercise 6.1: Show that for a p-form ω

? ?ω = (−1)
p(n−p)

ω . (6.10)

We can use the Hodge dual to define an inner product on p-forms.
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Definition: Let (M, g) be an oriented Riemannian manifold. Then the inner product

on p-forms,

( , ) : Ωp (M)⊗ Ωp (M) −→ R , (6.11)

is defined as

(α, β) =

∫
M

α ∧ ?β ∀α, β ∈ Ωp (M) . (6.12)

Theorem 6.1: Let (M, g) be an oriented Riemannian manifold. The inner product for

p-forms as defined above is symmetric and positive-definite.

Proof: It is easy to show that for p-forms α, β ∈ Ωp (M) the inner product is

(α, β) =

∫
M

1

p!
αµ1...µp

βµ1...µp
√
gdnx , (6.13)

where βµ1...µp are the components of β raised with the inverse metric. It is now clear that the

inner product is symmetric. We can also see that

(α, α) =

∫
M

1

p!
αµ1...µp

αµ1...µp
√
gdnx > 0 ∀α 6= 0 (6.14)

is positive-definite because the metric g is positive-definite.

Exercise 6.2: Show that

αp ∧ ?βp =
1

p!
αµ1...µp

βµ1...µp
√
gdx1 ∧ . . . ∧ dxn . (6.15)

Since we now have a symmetric inner product on the vector space of p-forms, we can define

adjoints of any operator. In particular, we define the adjoint of the exterior derivative d†, called

the codifferential:

Definition: Let (M, g) be an oriented Riemannian manifold. The codifferential

d† : Ωp (M) −→ Ωp−1 (M) (6.16)

is defined for any αp ∈ Ωp (M) and βp−1 ∈ Ωp−1 (M) as

(αp, dβp−1) =
(
d†αp, βp−1

)
. (6.17)

Let us from now onwards assume that we have a compact manifold without boundary, ∂M =

0. We call manifolds without boundary closed. This implies that the codifferential does not

contain boundary terms.
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Theorem 6.2: Let (M, g) be an n-dimensional oriented, compact, closed Riemannian

manifold. Then the codifferential is given by

d† = (−1)
pn−n+1

? d ? . (6.18)

Proof: Let us begin by using the fact that the inner product is symmetric so that

(αp, dβp−1) =

∫
M

dβp−1 ∧ ?αp , (6.19)

and integrate by parts

(αp, dβp−1) = − (−1)
p−1

∫
M

βp−1 ∧ d ? αp . (6.20)

Now use the fact that d ? αp is a n− p+ 1 form and so

? ?d ? α = (−1)
(n−p+1)(p−1)

d ? α . (6.21)

Thus, we can write (6.20) as

(αp, dβp−1) = (−1)
(n−p+1)(p−1)+p

∫
M

βp−1 ∧ ? (?d ? αp) . (6.22)

Now, let us simplify the exponent of −1 by noticing that p (p− 1) is always even. Finally

comparing to the definition of the codifferential (6.17) we find

d† = (−1)
pn−n+1

? d ? . (6.23)

This completes the proof.

Corollary: The codifferential d† is nilpotent, i.e. d†d† = 0.

Proof: This follows from the definition. For a p-form:

d†d† = (−1)
n
? d ? ?d? = (−1)

p(n−p)+n
? d2? = 0 , (6.24)

because d2 = 0.

Exercise 6.3: Write down the explicit expression for d† acting on p-forms in 3 dimensions.
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Exercise 6.4: Show that for a p-form ω ∈ Ωp with components

ω =
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp , (6.25)

the codifferential acts as

d†ω = − 1

(p− 1) !
∇σωσµ2...µp

dxµ2 ∧ . . . ∧ dxµp . (6.26)

Hint: Recall that 1√
g∂µ

(√
gV µ

)
= ∇µV µ.

Definition: A p-form ω ∈ Ωp (M) is called co-closed if it is in the kernel of d†, i.e.

d†ω = 0 , (6.27)

and co-exact if it is the image of d†, i.e. ∃ χ ∈ Ωp+1 (M) such that

ω = d†χ . (6.28)

We will denote by

Z̄p =
{
ωp | ωp ∈ Ωp (M) , d†ωp = 0

}
, (6.29)

the space of co-closed p-forms and by

B̄p =
{
ωp | ωp ∈ Ωp (M) , ∃βp+1 ∈ Ωp+1 such that ωp = d†βp+1

}
, (6.30)

the space of exact p-forms.

We now have an operator that raises the rank of a p-form and one that lowers it. Thus, we

can define an operator that takes p-forms to p-forms. This generalises our notion of the Laplacian

operators acting on functions.

Definition: Let (M, g) be a compact, closed Riemannian manifold. Then we define the

Hodge-deRham operator

∆ : Ωp (M) −→ Ωp (M) (6.31)

by

∆ = dd† + d†d . (6.32)
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Definition: We call a p-form ω ∈ Ωp (M) a harmonic p-form if it lies in the kernel of

∆, i.e.

∆ω = 0 . (6.33)

We label the vector space of harmonic p-forms as Hp (M).

Exercise 6.5: Write down the explicit expression of the Hodge-deRham operator acting

on p-forms in 3 dimensions.

Exercise 6.6: Show that for a p-form ω = 1
p!ωµ1...µpdx

µ1 ∧ . . .∧dxµp the Hodge operator

acts as

∆ω = −
(

1

p!
∇σ∇σωµ1...µp

+
1

(p− 1) !
[∇µ1

,∇ν ]ωνµ2...µp

)
dxµ1 ∧ . . . ∧ dxµp , (6.34)

where ωνµ2...µp = gσνωσµ2...µp .

Exercise 6.7: Show that

[∇µ,∇ν ]ωνµ2...µp
= −Rσµωσµ2...µp

− ωνσ[µ3...µp
Rσµ2]µν . (6.35)

Hint: Use normal coordinates so that the connection vanishes but the derivatives of the

connection are non-vanishing.

Exercise 6.8: Use the result of the previous two exercises to show that

∆ω = −
(

1

p!
∇σ∇σωµ1...µp −

1

(p− 1) !
Rσ[µ1

ωσµ2...µp]

+
1

(p− 2) !
ωνσ[µ3...µp

Rσµ1µ2]ν

)
dxµ1 ∧ . . . ∧ dxµp .

(6.36)

Theorem 6.3: A harmonic form is both closed and co-closed.

Proof: A harmonic form α satisfies

∆α = dd†α+ d†dα = 0 . (6.37)

Take the inner product of the above with α:

(
α, dd†α

)
+
(
α, d†dα

)
= (dα, dα) +

(
d†α, d†α

)
= 0 . (6.38)
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But since the inner product is positive-definite, the two terms must vanish independently. Thus

we have

(dα, dα) = 0 ,
(
d†α, d†α

)
= 0 . (6.39)

But again because the inner product is positive-definite, this means that

dα = 0 , d†α = 0 , (6.40)

and so α is both closed and co-closed. This completes the proof.

(Hodge) Theorem 6.4: Let (M, g) be a compact, closed Riemannian manifold. Then

any p-form ω ∈ Ωp (M) has a unique decomposition into a harmonic, exact and co-exact

part, i.e.

ω = α+ dβ + d†γ , (6.41)

for some β ∈ Ωp−1 (M), γ ∈ Ωp+1 (M) and α ∈ Hp (M). This is called the Hodge

decomposition.

Proof: We will not prove the full theorem but we will show that the decomposition is unique.

Assume that there are two different decompositions

ω = α+ dβ + d†γ = α′ + dβ′ + d†γ′ , (6.42)

with α, α′ ∈ Hp (M). Let us denote by

α̃ = α′ − α , β̃ = β′ − β , γ̃ = γ′ − γ . (6.43)

Then we have that

α̃+ dβ̃ + d†γ̃ = 0 . (6.44)

It remains to show that each term vanishes separately. To do so, act with d on the above equation

to obtain

dd†γ̃ = 0 . (6.45)

Taking the inner product of this with γ̃ we find

(
γ̃, dd†γ̃

)
=
(
d†γ̃, d†γ̃

)
= 0 . (6.46)

Because the inner product is positive-definite this implies

d†γ̃ = 0 . (6.47)
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We can repeat this argument to find

dβ̃ = 0 , (6.48)

and hence α̃ = 0. Thus, the two decompositions are the same. This completes the proof.

Note: The Hodge decomposition implies that we can decompose the vector space of p-forms as

Ωp (M) = Hp (M)⊕Bp (M)⊕ B̄p (M) . (6.49)

We will from now onwards often drop the argument (M).

Corollary: A closed form ωp ∈ Bp can always be written as

ωp = α+ dβ , (6.50)

where α ∈ Hp is harmonic, and similarly for a co-closed form.

Exercise 6.9: Prove the above, i.e. that a closed p-form can always be written as the

sum of a harmonic and an exact p-form.

Let us now turn to the question of when we can write a closed p-form as an exact p-form.

This question is the subject of deRham cohomology and is tied to the topology of the manifold

as we will shortly see explicitly. Let us first state the Poincaré Lemma again.

(Poincaré) Theorem 6.5: Given a closed p-form ω,

dω = 0 , (6.51)

we can locally write ω = dχ for some (p− 1)-form χ ∈ Ωp−1 (M).

This stems from the fact that locally any manifold looks like Rn and on Rn a closed p-form

is an exact p-form. However, global properties of the manifold could mean that the χ defined is

not globally well-defined.

Corollary: Bp ⊂ Zp.
Proof: This follows from the fact that every exact form is closed.
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Definition: The p-th deRham cohomology group is defined as

Hp =
Zp

Bp
. (6.52)

This means that Hp is the space of closed p-forms where we identify any two closed

p-forms which differ by an exact p-form:

ωp ∼ ωp + dβp−1 ∀βp−1 ∈ Ωp−1 . (6.53)

Given some closed p-form ω ∈ Ωp we define its equivalence class, the cohomology class

[ω] ∈ Hp , (6.54)

as the space of closed p-forms which differ from ω by an exact p-form. ω is called a

representative of the cohomology class.

Note: The group operation for the cohomology group is addition.

The cohomology group is manifestly independent of the metric since it is only defined using

the exterior derivative which does not require a metric. Thus, it is a topological property of the

manifold. The space of harmonic forms, on the other hand, clearly depends on the metric since

d† is defined with respect to a metric. Thus, it may seem like these two vector spaces measure

very different things. However, this is not the case as the following theorem shows.

Theorem 6.6: The space of harmonic p-forms Hp and the p-th cohomology group Hp

are isomorphic.

Proof: We saw previously that a closed form can always be written as the unique sum of a

harmonic and exact form. This defines the isomorphism.

Corollary: Every cohomology class contains a unique harmonic representative.

(Poincaré duality) Theorem 6.7: A p-form ω is harmonic if and only if ?ω is harmonic.

Proof: A p-form ω harmonic if and only if dω = d†ω = 0. Consider now

d† ? ω = (−1)
c
? dω , (6.55)

and

d ? ω = (−1)
c′
? d†ω , (6.56)

where c and c′ are some integers (the factors of (−1) are unimportant here). Recall that ?? =
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(−1)
p(n−p)

and hence ? is invertible. Thus, we see that

d†ω = 0⇐⇒ d ? ω = 0 , dω = 0⇐⇒ d† ? ω = 0 . (6.57)

This completes the proof.

Corollary: Hp and Hn−p are isomorphic.

Proof: This follows from the above together with the fact that the p-th deRham cohomology

group and space of harmonic p-forms is isomorphic: Hp ' Hp.

Example 6.1: H0 is the space of constant functions on the manifold. This is because 0-forms

are functions and there are no (−1)-forms hence no “exact functions”. Thus, on a connected

manifold we have H0 = R. If we have more than one connected component of the manifold then

we can define a constant function on each as a generating element and so we have H0 = Rc

where c is the number of connected components.

Example 6.2: On a n-dimensional manifold, an n-forms is always closed and so Hn is generated

by the volume form, if it exists. On an orientable manifold, there is a globally well-defined volume

form which generates Hn = R whereas for a non-orientable manifold Hn = 0.

Example 6.3: H2
(
T 2
)

= R2. Let us label the coordinates on the T 2 by coordinates x and

y, subject to the identifications x ∼ x + 1, y ∼ y + 1. There are only two closed 1-forms which

are not exact: dx and dy. Despite their suggestive form, dx and dy are not exact because the

functions x and y do not respect the torus identifications and thus are not globally well-defined.

Note: You might wonder what happens to Poincaré duality in the example above when the

manifold is not oriented. Clearly there are connected not-oriented manifolds (e.g. the Möbius

strip). In this case the Hodge dual is not well-defined and so Poincaré duality does not hold.

From the two examples above we see that the dimensions of the cohomology groups are

important. For example, they count the number of connected components of the manifold, or

indicate whether the manifold is orientable.

Definition: We define the Betti numbers

bp = dimHp , (6.58)

to be the dimension of the cohomology groups.

Theorem 6.8: For an oriented, compact, closed Riemannian manifold, bp = bn−p.

Proof: This follows from Poincaré duality.
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Definition: The Euler characteristic of a manifold is defined as the alternating sum

of the Betti numbers:

χ =

n∑
p=0

(−1)
p
bp . (6.59)

Corollary: The Euler characteristic vanishes for odd-dimensional manifolds.

Proof: This follows immediately from the identity bp = bn−p.

It should be clear that the existence of closed but not exact forms (and hence harmonic forms)

is closely related to the topology of the manifold. Let us take a simple example to get a better

feel for what exactly this is due to. Let us consider a closed 1-form ω which can thus locally be

written as

ω = dχ , (6.60)

for some function χ. In Rn we could then construct χ by taking

χ(x) =

∫ x

y

ω(ξ)µdξ
µ . (6.61)

In Rn this is a valid construction since χ(x) is independent of the path chosen between y and

x. (Changing y just corresponds to shifting χ by a constant which is of course going to leave ω

invariant). This is because for two different paths γ1 and γ2 from y to x the difference in the

definition of χ is just ∫
γ1

ω −
∫
γ2

ω =

∫
∂U

ω =

∫
U

dω = 0 , (6.62)

where ∂U is the boundary of the region U enclosed by the two curves γ1, γ2. Thus, the χ

obtained by this procedure is well-defined. This is not true for a general manifold, as we can see

by looking at the torus. For any two points, different paths connecting them are not in general

the boundary of a region.

We thus see that the existence of harmonic forms and hence closed but not exact forms is

related to the existence of closed curves that are not boundaries of a space. To understand this

we need to study homology.

6.2 Homology

We will be somewhat brief in this section and not prove theorems to the same rigour as before.

This is simply not doable within the scope of this course.
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Definition: Given a manifold M , a p-chain ap is a formal sum of smooth oriented

p-dimensional submanifolds of M , call them N , so that

ap =
∑
i

riNi , (6.63)

where ri are just some coefficients. When r ∈ R we have a real p-chain, whereas when

r ∈ C we have a complex p-chain. Similarly, we can define p-chains over an arbitrary

field K.

Note: Here we will only consider real p-chains.

Because we are using oriented p-dimensional submanifolds we can integrate p-forms over

these. Thus, we can think of p-chains as something we can integrate a p-form over and the

coefficients ri then just define the weight of the various integrals over Ni:∫
∑

i riNi

=
∑
i

ri

∫
Ni

. (6.64)

Definition: The space of p-chains is a vector space labelled by Cp.

Definition: The boundary operator ∂ associates to each manifold M its boundary

∂M . It maps a manifold of dimensions p to a manifold of dimension p− 1.

Theorem 6.9:

∂2 = 0 . (6.65)

Proof: The boundary of a boundary vanishes and so ∂2M = 0 for all M , i.e. ∂2 = 0. This can

be proven rigorously by “triangulating” your manifolds. This is called singular homology and is

beyond the scope of these lectures.

Definition: We define the boundary operator to act on p-chains by linearity:

∂
∑
i

riNi =
∑
i

ri∂Ni . (6.66)

Thus,

∂ : Cp −→ Cp−1 . (6.67)
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Definition: A p-cycle is a p-chain without boundary, i.e.

∂zp = 0 , (6.68)

for all p-cycles zp.

Definition: Let Zp be the space of p-cycles and Bp the space of p-chains that are bound-

aries of (p+ 1)-chains:

Bp = {ap ∈ Cp | ap = ∂ap+1 for some ap+1 ∈ Cp+1} . (6.69)

Just as for differential forms we can now ask which cycles are not boundaries themselves. We

do this by defining the homology group.

Definition: The p-th homology group is

Hp =
Zp
Bp

. (6.70)

Thus, Hp is the set of p-cycles with two cycles deemed equivalent if they differ by a

boundary

ap ∼ ap + ∂cp+1 . (6.71)

Example 6.4: All points are 0-cycles since they have no boundary and any two points are the

boundary of a curve. On each connected component we identify all points by the equivalence

relation and so H0 = Rc where c is the number of connected components.

Example 6.5: Consider T 2. Any two cycles going around the torus in the “same direction”

are homologous, such as a1 and a2 in 1a, or trivial if they do not wrap the “hole” of the T 2 and

are therefore a boundary, such as b′ in 1a. Therefore there are only two homologically distinct

1-cycles, the a and b cycles shown in figure 1b.

Example 6.6: The homology groups of T 2: H0 = R since the torus is connected. H1 is

generated by two different 1-cycles as we discussed above and so H1 = R2. Finally, the only

2-chain without boundary is the T 2 itself and so we have H2 = R. You may wonder why the

T 2 is not the boundary of the space it encloses (just as a sphere is the boundary of the ball it

encloses). The reason is that the enclosed space is itself not part of the T 2 manifold.

Note: The fact that the homology groups here agree with the cohomology group is not an

accident. We will see that this is true in general.

Example 6.7: The homology groups of Sn: H0 = R since the n-sphere is connected. Hk = 0
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(a) a1 ∼ a2 since a1 − a2 is the boundary
of the shaded region enclosed. b′ is a
trivial 1-cycle as it is the boundary of

the shaded space enclosed.

(b) The a and b cycles are the only
homologously distinct 1-cycles.

Figure 1: T 2 has only two homologously distinct 1-cycles a and b, as shown in (a). Any other
1-cycles are either a boundary or differ from a or b by a boundary, as shown in (b).

∀ 0 < k < n because each (hyper-)circle is the boundary of some half-sphere. Hn = R since the

n-sphere has no boundary and is itself not a boundary.

6.3 deRam’s theorems and the isomorphism between homology and

cohomology

Given a closed p-form and a p-cycle, it is natural to integrate one over the other. This defines a

natural inner product between Zp and Zp.

Definition: Given a closed p-form ωp ∈ Zp and a p-cycle ap ∈ Zp, we define the period

of ωp over ap as

π (ap, ωp) =

∫
ap

ωp . (6.72)

Theorem 6.10: The period function π defined above is a function on homology and

cohomology classes, i.e.

π : Hp ⊗Hp −→ R . (6.73)

Proof: The period function as defined in (6.72) above looks like a map from Zp ⊗ Zp −→ R.

We wish to show that the period of any element of a cohomology class over any cycles separated

by a boundary is the same. Consider thus the closed p-form ω′p = ωp + dβp−1 and p-cycle
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a′p = ap + δcp+1. Then using Stoke’s theorem we find that the period is

π(a′p, ω
′
p) =

∫
ap+δcp+1

(ωp + dβp−1)

=

∫
ap

ωp +

∫
ap

dβp−1 +

∫
δcp+1

ωp +

∫
δcp+1

dβp−1

=

∫
ap

ωp +

∫
δap

βp−1 +

∫
cp+1

dωp +

∫
cp+1

d2βp−1

=

∫
ap

ωp .

(6.74)

Thus the period evaluated on different representatives of the same (co-)homology class is the

same.

There are two important theorems involving the period, known as deRham’s theorems, which

together show that the p-th cohomology and p-th homology groups are isomorphic to each other.

We will only state these theorems here.

(deRham’s 1st) Theorem 6.11: Let {zi} be a basis for Hp. Then given any set of

numbers αi, i = 1, . . .dim(Hp), there exists a closed p-form ω ∈ Zp such that π (zi, ω) =

αi.

(deRham’s 2nd) Theorem 6.12: If all the periods of a closed p-form ω ∈ Zp vanish

then ω is exact.

If {zi} is a basis for Hp and
{
ωi
}

is a basis for Hp then the period matrix

πi
j = π

(
zi, ω

j
)

(6.75)

is invertible and thus Hp and Hp are isomorphic. The isomorphism can be made more concrete

using Poincaré duality (and recalling that Hp ' Hn−p).

(Poincaré Duality) Theorem 6.13: Given any p-cycle a ∈ Zp there exists an (n− p)-
form α, the so-called Poincaré dual of a, such that for any closed p-form ω ∈ Zp∫

a

ω =

∫
M

α ∧ ω . (6.76)
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