Introduction to String Theory

Humboldt-Universität zu Berlin Dr. Emanuel Malek

Exercise Sheet 8

1 In this exercise, you will develop the general framework of BRST quantisation. Consider a gauge theory with fields ϕ_i , symmetry parameters ϵ^{α} and a gauge-fixing condition $F^A(\phi) = 0$, where the indices i, α and A are generalised indices and include labels for the coordinates. In this notation,

$$\phi_i \phi^{\prime i} \equiv \int dx \phi_{\hat{i}}(x) \phi^{\prime \hat{i}}(x) , \qquad (1.1)$$

where \hat{i} is the actual label for the fields, and the sum over the coordinate part of the i index becomes the integral in (1.1). The gauge symmetry defines the algebra

$$[\delta_{\alpha}, \, \delta_{\beta}] = f^{\gamma}{}_{\alpha\beta}\delta_{\gamma} \,, \tag{1.2}$$

with structure constants $f^{\gamma}_{\alpha\beta}$.

The path integral for a gauge-invariant theory can be written as

$$Z = \frac{1}{\text{Vol}_{\text{gauge}}} \int D\phi_i e^{-S(\phi)} = \int D\phi_i DB_A Db_A Dc^{\alpha} e^{-S_1(\phi) - S_2(B) - S_3(b,c)}, \qquad (1.3)$$

where $S_1(\phi) = S(\phi)$ is the original gauge-invariant action and

$$S_2(B) = -iB_A F^A(\phi),$$

$$S_3(b,c) = b_A c^\alpha \delta_\alpha F^A(\phi),$$
(1.4)

are the gauge-fixing and ghost actions, respectively. Note that B_A acts simply as a Lagrange multiplier imposing the gauge-fixing condition

$$F^A(\phi) = 0, (1.5)$$

whereas the b, c fields are Grassmann-valued fields, generalising the b, c ghosts that you will meet in the lectures.

(a) Consider the global, fermionic symmetry

$$\delta_{\text{BRST}}\phi_{i} = -i\theta c^{\alpha}\delta_{\alpha}\phi_{i},$$

$$\delta_{\text{BRST}}B_{A} = 0,$$

$$\delta_{\text{BRST}}b_{A} = \theta B_{A},$$

$$\delta_{\text{BRST}}c^{\alpha} = \frac{i}{2}\theta f^{\alpha}{}_{\beta\gamma}c^{\beta}c^{\gamma},$$
(1.6)

where ϵ is a Grassmann-valued symmetry parameter. This is known as the BRST symmetry. Show that

$$\delta_{\text{BRST}}\delta_{\text{BRST}}'\psi = 0, \qquad (1.7)$$

when $\psi \in \{\phi_i, B_A, b_A, c^{\alpha}\}.$

Hint: Use the Jacobi identity for the gauge symmetry algebra.

(b) Show that

$$\delta_{\text{BRST}}\delta'_{\text{BRST}}G(\phi, B, b, c) = 0, \qquad (1.8)$$

for a general functional $G(\phi, B, b, c)$ of the fields ϕ_i , B_A , b_A , c^{α} . Define the fermionic conserved charge Q associated to the BRST symmetry and argue that

$$Q^2 = 0. (1.9)$$

(c) Show that

$$\delta_{\text{BRST}}(b_A F^A) = i\theta \left(S_2 + S_3 \right) , \qquad (1.10)$$

and hence show that the total action $S_1 + S_2 + S_3$ is invariant under the BRST symmetry.

(d) Consider an infinitesimal change of the gauge-fixing condition δF^A . Use (1.10) to show that under this change δF^A , an amplitude

$$\langle f|i\rangle = \int_{i}^{f} D\phi_{i} DB_{A} Db_{A} Dc^{\alpha} e^{-S_{1}(\phi) - S_{2}(B) - S_{3}(b,c)}, \qquad (1.11)$$

changes by

$$\theta \delta \langle f | i \rangle = -\theta \langle f | \{Q, b_A \delta F^A\} | i \rangle . \tag{1.12}$$

Using $Q^{\dagger} = Q$, argue that this implies that for physical states we must have

$$Q |physical\rangle = 0. (1.13)$$

(e) Given any any $|\chi\rangle$, show that the state $Q|\chi\rangle$ is physical, but also orthogonal to all physical states. Therefore, all physical amplitudes involving the null state $Q|\chi\rangle$ vanish. Moreover, two physical states which differ by a null state $Q|\chi\rangle$, i.e.

$$|\text{phys}'\rangle = |\text{phys}\rangle + Q|\chi\rangle$$
, (1.14)

will have the same inner product with all physical states. As a result, the states in (1.14) are physicall equivalent.

In summary, all physical states satisfy $Q | \text{phys} \rangle = 0$ (i.e. lie in the kernel of Q) and are equivalent if they differ by a state in the image of Q. In other words, the physical but inequivalent states of the system are to be identified with the BRST-cohomology.

2 Now, we will apply the BRST formalism to quantise the point particle. The gauge symmetry is the reparameterisation symmetry

$$\tau \longrightarrow \tau'(\tau)$$
. (2.1)

As a basis for the infinitesimal transformations, we can use

$$\delta_{\tau_1} \tau = \delta(\tau - \tau_1) \,. \tag{2.2}$$

An infinitesimal transformation is then recovered as

$$\delta_{\epsilon}\tau = \epsilon^{\alpha}\delta_{\alpha}\tau = \int d\tau_{1}\epsilon(\tau_{1})\delta(\tau - \tau_{1}) = \epsilon(\tau). \tag{2.3}$$

The reparameterisation symmetry acts on the fields $\phi_i = (X^{\mu}(\tau), e(\tau))$ as

$$\delta_{\tau_1} X^{\mu}(\tau) = -\delta(\tau - \tau_1) \partial_{\tau} X^{\mu}(\tau) ,$$

$$\delta_{\tau_1} e(\tau) = -\partial_{\tau} \left[\delta(\tau - \tau_1) e(\tau) \right] .$$
(2.4)

- (a) Show that (2.4) recovers the usual transformation law for X^{μ} and e under infinitesimal reparameterisations.
- (b) Show that the algebra of reparameterisations has structure constants

$$f^{\tau_3}_{\tau_1\tau_2} = \delta(\tau_3 - \tau_1)\partial_{\tau_3}\delta(\tau_3 - \tau_2) - \delta(\tau_3 - \tau_2)\partial_{\tau_3}\delta(\tau_3 - \tau_1). \tag{2.5}$$

(c) Show that the BRST symmetry (1.6) reduces to

$$\delta_{\text{BRST}} X^{\mu}(\tau) = i\theta c(\tau) \partial_{\tau} X^{\mu}(\tau) ,$$

$$\delta_{\text{BRST}} e(\tau) = i\theta \partial_{\tau} (c(\tau)e(\tau)) ,$$

$$\delta_{\text{BRST}} B(\tau) = 0 ,$$

$$\delta_{\text{BRST}} b(\tau) = \theta B(\tau) ,$$

$$\delta_{\text{BRST}} c(\tau) = i\theta c(\tau) \partial_{\tau} c(\tau) .$$
(2.6)

(d) Show that the full action $S_1 + S_2 + S_3$ with the gauge fixing condition $F(\tau) = 1 - e(\tau)$ is given by

$$S_1 + S_2 + S_3 = \int d\tau \left(\frac{1}{2} e^{-1} \dot{X}^2 + \frac{1}{2} e m^2 + iB \left(e - 1 \right) - e \dot{b} c \right), \qquad (2.7)$$

with $\dot{X} = \partial_{\tau} X$, etc. Integrate out B and impose the constraint from the e equation of motion to find the modified BRST symmetry

$$\delta_{\text{BRST}} X^{\mu}(\tau) = i\theta c \dot{X}^{\mu} ,$$

$$\delta_{\text{BRST}} b(\tau) = i\theta \left(\frac{1}{2} (m^2 - \dot{X}^2) - \dot{b}c \right) ,$$

$$\delta_{\text{BRST}} c(\tau) = i\theta c \dot{c} .$$
(2.8)

Under what conditions does this symmetry square to zero?

(e) Show that Q = cH, with H the Hamiltonian

$$H = \frac{1}{2} \left(p^2 + m^2 \right) \,, \tag{2.9}$$

and where $p^{\mu} = i\dot{X}^{\mu}$ is the Euclidean canonical momentum.

(f) The b, c ghosts have canonical anticommutators

$$\{b, c\} = 1, \tag{2.10}$$

and thus generate a two-state system $|\uparrow\rangle$, $|\downarrow\rangle$. A complete set of states is $|k,\uparrow\rangle$, $|k,\downarrow\rangle$ with

$$p^{\mu} | k, \downarrow \rangle = k^{\mu} | k, \downarrow \rangle , \qquad p^{\mu} | k, \uparrow \rangle = k^{\mu} | k, \uparrow \rangle ,$$

$$b | k, \downarrow \rangle = 0 , \qquad b | k, \uparrow \rangle = | k, \downarrow \rangle ,$$

$$c | k, \downarrow \rangle = | k, \uparrow \rangle , \qquad c | k, \uparrow \rangle = 0 .$$

$$(2.11)$$

What is the spectrum of physically inequivalent states?