Advanced topics in string and field theory: Complex manifolds and Calabi-Yau manifolds

Emanuel Malek

2 Almost complex manifolds

This chapter will be devoted to understanding the consequences of the following important definition.

Definition: An almost complex manifold (M, J) is a manifold which admits a *globally defined* rank (1,1) tensor field $J: TM \longrightarrow TM$ s.t.

$$J^2 = -\mathbb{I}. (2.1)$$

A globally defined tensor satisfying (2.1) is called an **almost complex structure**.

Note: Since we are currently still talking about real manifolds, J is a real tensor field.

Let us look at the definition in a bit more detail. For an almost complex manifold (M,J) we have at each point $p \in M$ an endomorphism $J_p: T_pM \longrightarrow T_pM$, i.e. a map that takes vectors to vectors, which satisfies $J_p^2 = -\mathbb{I}_p$ and which depends smoothly on $p \in M$. \mathbb{I}_p is here the identity matrix acting on T_pM , the tangent space at the point p. Because J is a rank (1,1) tensor we can introduce a basis of vector fields $\frac{\partial}{\partial x^{\mu}}$ and a dual basis of one-forms dx^{μ} and write at each point

$$J_p = J_\mu^{\ \nu}(p) \frac{\partial}{\partial x^\nu} \otimes dx^\mu \,. \tag{2.2}$$

As said earlier, J is a real-valued tensor field which means that $J_{\mu}^{\nu}(p)$ is real.¹ Consider a vector field $X \in \Gamma(TM)$ with components

$$X = X^{\mu} \partial_{\mu} \,. \tag{2.3}$$

J acts on this according to

$$J(X) = X^{\mu} J_{\mu}{}^{\nu} \partial_{\nu} \,, \tag{2.4}$$

¹Caveat: J_{μ}^{ν} is real when expanded in terms of real vector fields. We will see shortly that when we act on the complexified tangent vector space the components J_{μ}^{ν} can be complex. However, in that case we still find that the tensor $J^* = J$

which means that

$$J^{2}(X) = X^{\rho} J_{\rho}{}^{\mu} J_{\mu}{}^{\nu} \frac{\partial}{\partial x^{\nu}}. \tag{2.5}$$

Thus, at each point $p \in M$ we find that to be an almost complex structure J must satisfy

$$J(p)_{\mu}{}^{\rho}J(p)_{\rho}{}^{\nu} = -\delta_{\mu}{}^{\nu}. \tag{2.6}$$

To have an almost complex manifold, such a tensor field must be globally well-defined. This means that we must be able to define a J in any coordinate patch and in any overlap between two patches J must transform as a tensor. For a general manifold, this is not doable because of topological obstructions and we may find that, for example, J has singularities at some points.

Let us mention the simplest topological obstruction to an almost complex manifold:

Theorem 2.1: An almost complex manifold must have even dimension.

Exercise 2.1: Prove this.

Hint: Consider the determinant of J^2 and recall that J is a real-valued matrix.

Note: The converse is not true. Not all even dimensional manifolds admit an almost complex structure. For example, S^4 does not admit an almost complex structure.

Example 2.1: Let $\Sigma \in \mathbb{R}^3$ be an oriented (2-dimensional) hypersurface. Let $v: \Sigma \longrightarrow S^2$ be the Gauss map, i.e. the map which associates to every point in $p \in \Sigma$ the outer normal $v(p) \perp T_p\Sigma$. Then we can define an almost complex structure by

$$J_p u = v(p) \times u \,,\, \forall \, u \in T_p \Sigma \,, \tag{2.7}$$

where \times denotes the vector cross-product.

Exercise 2.2: Show that $J_p^2 = -1$.

Theorem 2.2: Any oriented two-dimensional Riemann surface Σ is almost complex.

Proof: Σ has a metric $g_{\mu\nu}$ because it is Riemann and since it is oriented there also exists a volume-form, i.e. a covariantly constant antisymmetric tensor $\epsilon_{\mu\nu}$, which we may normalise to be $\epsilon_{12} = 1$ in a local coordinate frame. This tensor obeys

$$\epsilon^{\mu\nu}\epsilon_{\nu\rho} = -\delta^{\mu}{}_{\rho}\,,\tag{2.8}$$

where $\epsilon^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}\epsilon_{\rho\sigma}$ is raised by the metric. Now we can define the tensor field

$$J_{\mu}^{\ \nu} = \epsilon_{\mu\rho} g^{\rho\nu} \,, \tag{2.9}$$

which it can easily be verified defines an almost complex structure:

$$J^2 = -\mathbb{I}. (2.10)$$

This completes the proof by construction.

2.1 Complexified tangent space and (anti-)holomorphic vectors

To proceed, we want to consider the **complexified tangent space**. This just means that we are now considering vectors with *complex* coefficients and linear combinations of such vectors. Addition and multiplication in these vector spaces is then just performed with complex numbers.

Concretely, we can write a general complexified vector $Z \in T_pM_{\mathbb{C}}$ as

$$Z = X + iY, (2.11)$$

where $X, Y \in T_pM$. The complex conjugate is defined as

$$\bar{Z} = X - iY. \tag{2.12}$$

The reason we introduce the complexified tangent space is because we can now diagonalise J_p . J_p acts on $T_pM_{\mathbb{C}}$ as a complex linear map still satisfying

$$J_p^2 = -\mathbb{I}_p \qquad \forall \, p \in M \,. \tag{2.13}$$

The eigenvalues of J_p can only be $\pm i$ and so we have the eigenvectors in $T_pM_{\mathbb C}$

$$J_p Z^+ = iZ^+ ,$$

 $J_p Z^- = -iZ^- .$ (2.14)

Exercise 2.3: Show that if $J_p Z^{\pm} = \pm i Z^{\pm}$ then

$$J_p \bar{Z}^{\pm} = \mp i \bar{Z}^{\pm} \,. \tag{2.15}$$

Hint: Write Z^{\pm} in terms of real vectors as in (2.11) and recall that J_p is a real-valued tensor when acting on real vectors to find how it acts on X and Y.

Using the result of the above exercise, we find that J_p has equal numbers of +i and -i eigenvalues.

We can also define the operators

$$P^{\pm} = \frac{1}{2} \left(\mathbb{I} \mp iJ \right) \,, \tag{2.16}$$

satisfying

$$(P^{\pm})^2 = P^{\pm}, \qquad P^+ + P^- = \mathbb{I}, \qquad P^+P^- = P^-P^+ = 0.$$
 (2.17)

These relationships mean that they are **projection operators**. Because

$$J_p P^{\pm} = \frac{1}{2} J_p \left(\mathbb{I}_p \mp i J_p \right) = \frac{1}{2} \left(J_p \pm i \mathbb{I}_p \right) = \pm i P^{\pm} ,$$
 (2.18)

we find that these projection operators project vector fields into the $\pm i$ eigenspaces of J_p :

$$J_p(P^{\pm}Z) = \pm iP^{\pm}Z, \forall Z \in T_pM_{\mathbb{C}}. \tag{2.19}$$

Let us define the eigenspaces as

$$T_p M^{\pm} = \{ Z \in T_p M_{\mathbb{C}} | J_p Z = \pm iZ \}$$
 (2.20)

We can write any $Z \in T_pM_{\mathbb{C}}$ as

$$Z = Z^{\pm} + Z^{\mp}$$
, (2.21)

where

$$Z^{\pm} \equiv P^{\pm}Z = \frac{1}{2} (Z \mp i J_p(Z))$$
 (2.22)

are (anti-)holomorphic vectors. This implies that

$$T_p M_{\mathbb{C}} = T_p M^+ \oplus T_p M^- \,, \tag{2.23}$$

and hence if the almost complex manifold (M, J) has dimension m = 2n then J_p has m eigenvalues +i and m eigenvalues -i. We call the elements in T_pM^+ and T_pM^- holomorphic and antiholomorphic vectors, respectively.

Let us now write two common forms of the almost complex structure. Expanding in a basis of real vectors, we can write J_p pointwise as

$$J_p = \begin{pmatrix} 0 & \mathbb{I}_{n \times n} \\ -\mathbb{I}_{n \times n} & 0 \end{pmatrix}. \tag{2.24}$$

We can also diagonalise J_p by expanding in a basis of complex vector fields in $T_pM_{\mathbb{C}}$:

$$J_p = \begin{pmatrix} i \mathbb{I}_{n \times n} & 0\\ 0 & -i \mathbb{I}_{n \times n} \end{pmatrix}. \tag{2.25}$$

We can write this more explicitly by defining e_a and \bar{e}_a to be basis vectors for $T_pM_{\mathbb{C}}$ and their corresponding dual basis e^a and \bar{e}^a for the complexified cotangent space $T_p^*M_{\mathbb{C}}$, where $a=1,\ldots n$. Then we can write the complex structure as

$$J_p = ie_a \otimes e^a - i\bar{e}_a \otimes \bar{e}^a \,, \tag{2.26}$$

where summation is implied as usual. This is often called the **canonical form** of the almost complex structure. Note that this expansion can only be done $at\ a\ point$, not even in the neighbourhood of that point! That is because the definition of the almost complex structure does not imply J must be constant.

We will soon be discussing when we can define a complex coordinate basis z^a with complex conjugates \bar{z}^a such that $e_a = \frac{\partial}{\partial z^a}$ and $\bar{e}_a = \frac{\partial}{\partial \bar{z}^a}$ and similarly for the basis of one-forms $e^a = dz^a$ and $\bar{e}^a = d\bar{z}^a$. When this is possible, we have a **complex manifold**.

\mathbb{C} as a vector space

In the next note we will use the fact that \mathbb{C} is a vector space over \mathbb{R} . Let's briefly review what this means. Recall that a vector space over a field K, here \mathbb{R} , is a set V, here the complex numbers, subject to some axioms. The elements of V are called vectors and elements of K are called scalars. There are two operations, addition of vectors and multiplication of vectors by scalars which must satisfy the following axioms:

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $a, b \in K$, then

- $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$, (associativity of vector addition)
- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$, (commutativity of vector addition)
- $\exists \ \mathbf{0} \in V \text{ such that } \mathbf{v} + \mathbf{0} = \mathbf{v}, \ \forall v \in \mathbf{V},$ (identity element of vector addition)
- $\forall \mathbf{v} \in V \exists -\mathbf{v} \in V \text{ s.t. } \mathbf{v} + (-\mathbf{v}) = \mathbf{0}$, (inverse elements of vector addition)
- $\forall a, b \in K$, $a(b\mathbf{v}) = (ab)\mathbf{v}$, (compatibility of scalar and field multiplication)
- $1\mathbf{v} = \mathbf{v}$ where 1 is the multiplicative identity of K, (identity element of scalar multiplication)
- $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$, (distributivity 1)
- $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$, (distributivity 2)

Before we get there, let us finish this section by discussing differential forms on almost complex manifolds.

A digression on mathematical notation

Definition: The **complexified vector space** $V_{\mathbb{C}}$ of a vector space V is defined as the tensor product

$$V_{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}. \tag{2.27}$$

This just means that an element of the complexified vector space $V_{\mathbb{C}}$ consists of a vector $v \in V$ and a complex number $c \in \mathbb{C}$ paired up as

$$(v,c) \in V_{\mathbb{C}} \,. \tag{2.28}$$

You may be worried by this because it seems like multiplication by real numbers is not well-defined. For any $r \in \mathbb{R}$, do we multiply as

$$r \cdot (v, c) = (r \cdot v, c) , \qquad (2.29)$$

or

$$r \cdot (v, c) = (v, r \cdot c) ? \tag{2.30}$$

We resolve this by defining the pairing above up to an equivalence relation (as is the convention for the tensor product of any vector spaces) so that for any $r \in \mathbb{R}$

$$r(v,c) \sim (rv,c) \sim (v,rc)$$
 . (2.31)

The fact that in the above equivalence relation $r \in \mathbb{R}$ must be real is why we labelled the tensor product with the subscript $\otimes_{\mathbb{R}}$. We can now define complex conjugation of our vectors as:

$$v \otimes c \longrightarrow v \otimes \bar{c}, \quad \forall v \in V, \ c \in \mathbb{C},$$
 (2.32)

where \bar{c} is the usual complex conjugate of c.

2.2 (p,q)-forms on almost complex manifolds

In the previous section we defined operators which project vectors onto their (anti-)holomorphic parts. The projectors $P^{\pm}:TM\longrightarrow TM$ are rank (1,1) forms and hence endomorphisms of the tangent bundle. This means they also have a natural action on 1-forms. In real coordinates, the components of the projectors are real matrices $P_{\mu}^{\pm\nu}$. They thus act on a 1-form $\theta=\theta_{\mu}dx^{\mu}$ as

$$P^{\pm}\theta = P^{\pm\nu}_{\mu}\theta_{\nu}dx^{\mu}. \tag{2.33}$$

We define

$$\theta^{(1,0)} = P^+ \theta, \qquad \theta^{(0,1)} = P^- \theta,$$
 (2.34)

which by the properties of the projection operators satisfy

$$\theta = \theta^{(1,0)} + \theta^{(0,1)} \,, \tag{2.35}$$

and we call them (1,0)-forms and (0,1)-forms, respectively.

Exercise 2.4: Let (M, J) be an almost complex manifold and let θ be a 1-form on M. Show that

$$\theta\left(Z\right) = 0\tag{2.36}$$

on any holomorphic vector field Z if and only if θ is a (0,1)-form.

We can also define higher (p,q)-forms. For example, for a 2-form ω we can define

$$\omega_{\mu\nu}^{(2,0)} = P_{\mu}^{+\rho} P_{\nu}^{+\sigma} \omega_{\rho\sigma} , \qquad \omega_{\mu\nu}^{(1,1)} = \left(P_{\mu}^{+\rho} P_{\nu}^{-\sigma} + P_{\mu}^{-\rho} P_{\nu}^{+\sigma} \right) \omega_{\rho\sigma} , \qquad \omega_{\mu\nu}^{(2,0)} = P_{\mu}^{-\rho} P_{\nu}^{-\sigma} \omega_{\rho\sigma} , \tag{2.37}$$

and these satisfy

$$\omega = \omega^{(2,0)} + \omega^{(1,1)} + \omega^{(0,2)}. \tag{2.38}$$

More generally let us denote the space of smooth p-forms on a manifold M as $\Omega^p(M)$ and the space of smooth p, q-form as $\Omega^{(p,q)}$. We find that this can be decomposed into a sum of lower (p,q)-forms:

$$\Omega^{p}(M) = \bigoplus_{k=0}^{p} \Omega^{(p-k,k)}(M). \qquad (2.39)$$

2.2.1 Exterior derivatives of (p, q)-forms

Let us end this chapter by discussing the exterior derivative of (p,q)-forms. Given some (p,q)-form ω , the exterior derivative acts as

$$d\omega = (\lambda_1)^{(p-1,q+2)} + (\lambda_2)^{(p,q+1)} + (\lambda_3)^{(p+1,q)} + (\lambda_4)^{(p+2,q-1)}, \qquad (2.40)$$

where $\lambda_1, \ldots, \lambda_4$ are some p+q+1-forms.

Exercise 2.5: Show that this is true for the case where ω is a (2,0)-form and show that in this case

$$(\lambda_{1})_{\mu\nu\rho} = 2P_{[\mu}^{+\sigma}P_{\nu}^{-\lambda}P_{\rho]}^{-\kappa}\partial_{\lambda}P_{\kappa}^{+\tau}\omega_{\sigma\tau},$$

$$(\lambda_{2})_{\mu\nu\rho} = 2\omega_{\sigma\tau}P_{[\nu}^{+\sigma}\left(P_{\mu}^{+\lambda}P_{\rho]}^{-\kappa} + P_{\mu}^{-\lambda}P_{\rho]}^{+\kappa}\right)\partial_{\lambda}P_{\kappa}^{+\tau} + P_{[\mu}^{-\lambda}P_{\nu}^{+\kappa}P_{\rho]}^{+\sigma}\partial_{\lambda}\omega_{\kappa\sigma},$$

$$(\lambda_{3})_{\mu\nu\rho} = P_{[\mu}^{+\sigma}P_{\nu}^{+\kappa}P_{\rho]}^{+\lambda}\partial_{\sigma}\omega_{\kappa\lambda},$$

$$(\lambda_{4})_{\mu\nu\rho} = 0.$$

$$(2.41)$$

Hint: Use the fact that $\delta_{\mu}^{\ \nu} = P_{\mu}^{+\nu} + P_{\mu}^{-\nu}$.

The forms $(\lambda_2)^{(p,q+1)}$ and $(\lambda_3)^{(p+1,q)}$ are particularly important, as we will see in the next chapter. Let us define the **Dolbeault operators**

$$\partial: \Omega^{(p,q)} \longrightarrow \Omega^{(p+1,q)}, \qquad \bar{\partial}: \Omega^{(p,q)} \longrightarrow \Omega^{(p,q+1)},$$
 (2.42)

as

$$\partial \omega^{(p,q)} = (\lambda_3)^{(p+1,q)} = (P^+)^{p+1} (P^-)^q d\omega^{(p,q)},$$

$$\bar{\partial} \omega^{(p,q+1)} = (\lambda_2)^{(p,q+1)} = (P^+)^p (P^-)^{q+1} d\omega^{(p,q)},$$
(2.43)

where we define the shorthand $(P^{\pm})^p$ as the operator that projects p indices onto their (anti-)holomorphic parts. Note that the Dolbeault operators are not nilpotent, i.e. $\partial^2 \neq 0$ and $\bar{\partial}^2 \neq 0$.

In the next chapter, we will see that for complex manifolds $d=\partial+\bar{\partial}$ and that ∂ and $\bar{\partial}$ are nilpotent.