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2 Almost complex manifolds

This chapter will be devoted to understanding the consequences of the following important def-

inition.

Definition: An almost complex manifold (M,J) is a manifold which admits a globally

defined rank (1,1) tensor field J : TM −→ TM s.t.

J2 = −I . (2.1)

A globally defined tensor satisfying (2.1) is called an almost complex structure.

Note: Since we are currently still talking about real manifolds, J is a real tensor field.

Let us look at the definition in a bit more detail. For an almost complex manifold (M,J) we

have at each point p ∈M an endomorphism Jp : TpM −→ TpM , i.e. a map that takes vectors to

vectors, which satisfies J2
p = −Ip and which depends smoothly on p ∈M . Ip is here the identity

matrix acting on TpM , the tangent space at the point p. Because J is a rank (1, 1) tensor we

can introduce a basis of vector fields ∂
∂xµ and a dual basis of one-forms dxµ and write at each

point

Jp = Jµ
ν(p)

∂

∂xν
⊗ dxµ . (2.2)

As said earlier, J is a real-valued tensor field which means that Jµ
ν(p) is real.1 Consider a vector

field X ∈ Γ(TM) with components

X = Xµ∂µ . (2.3)

J acts on this according to

J(X) = XµJµ
ν∂ν , (2.4)

1Caveat: Jµν is real when expanded in terms of real vector fields. We will see shortly that when we act on the
complexified tangent vector space the components Jµν can be complex. However, in that case we still find that
the tensor J? = J
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which means that

J2(X) = XρJρ
µJµ

ν ∂

∂xν
. (2.5)

Thus, at each point p ∈M we find that to be an almost complex structure J must satisfy

J(p)µ
ρJ(p)ρ

ν = −δµν . (2.6)

To have an almost complex manifold, such a tensor field must be globally well-defined. This

means that we must be able to define a J in any coordinate patch and in any overlap between

two patches J must transform as a tensor. For a general manifold, this is not doable because of

topological obstructions and we may find that, for example, J has singularities at some points.

Let us mention the simplest topological obstruction to an almost complex manifold:

Theorem 2.1: An almost complex manifold must have even dimension.

Exercise 2.1: Prove this.

Hint: Consider the determinant of J2 and recall that J is a real-valued matrix.

Note: The converse is not true. Not all even dimensional manifolds admit an almost complex

structure. For example, S4 does not admit an almost complex structure.

Example 2.1: Let Σ ∈ R3 be an oriented (2-dimensional) hypersurface. Let v : Σ −→ S2

be the Gauss map, i.e. the map which associates to every point in p ∈ Σ the outer normal

v(p) ⊥ TpΣ. Then we can define an almost complex structure by

Jpu = v(p)× u , ∀u ∈ TpΣ , (2.7)

where × denotes the vector cross-product.

Exercise 2.2: Show that J2
p = −1.

Theorem 2.2: Any oriented two-dimensional Riemann surface Σ is almost complex.

Proof: Σ has a metric gµν because it is Riemann and since it is oriented there also exists a

volume-form, i.e. a covariantly constant antisymmetric tensor εµν , which we may normalise to

be ε12 = 1 in a local coordinate frame. This tensor obeys

εµνενρ = −δµρ , (2.8)
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where εµν = gµρgνσερσ is raised by the metric. Now we can define the tensor field

Jµ
ν = εµρg

ρν , (2.9)

which it can easily be verified defines an almost complex structure:

J2 = −I . (2.10)

This completes the proof by construction.

2.1 Complexified tangent space and (anti-)holomorphic vectors

To proceed, we want to consider the complexified tangent space. This just means that we

are now considering vectors with complex coefficients and linear combinations of such vectors.

Addition and multiplication in these vector spaces is then just performed with complex numbers.

Concretely, we can write a general complexified vector Z ∈ TpMC as

Z = X + iY , (2.11)

where X,Y ∈ TpM . The complex conjugate is defined as

Z̄ = X − iY . (2.12)

The reason we introduce the complexified tangent space is because we can now diagonalise

Jp. Jp acts on TpMC as a complex linear map still satisfying

J2
p = −Ip ∀ p ∈M . (2.13)

The eigenvalues of Jp can only be ±i and so we have the eigenvectors in TpMC

JpZ
+ = iZ+ ,

JpZ
− = −iZ− .

(2.14)

Exercise 2.3: Show that if JpZ
± = ±iZ± then

JpZ̄
± = ∓iZ̄± . (2.15)

Hint: Write Z± in terms of real vectors as in (2.11) and recall that Jp is a real-valued

tensor when acting on real vectors to find how it acts on X and Y .

Using the result of the above exercise, we find that Jp has equal numbers of +i and −i eigenvalues.
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We can also define the operators

P± =
1

2
(I∓ iJ) , (2.16)

satisfying (
P±)2 = P± , P+ + P− = I , P+P− = P−P+ = 0 . (2.17)

These relationships mean that they are projection operators. Because

JpP
± =

1

2
Jp (Ip ∓ iJp) =

1

2
(Jp ± iIp) = ±iP± , (2.18)

we find that these projection operators project vector fields into the ±i eigenspaces of Jp:

Jp
(
P±Z

)
= ±iP±Z , ∀Z ∈ TpMC . (2.19)

Let us define the eigenspaces as

TpM
± = {Z ∈ TpMC|JpZ = ±iZ} . (2.20)

We can write any Z ∈ TpMC as

Z = Z± + Z∓ , (2.21)

where

Z± ≡ P±Z =
1

2
(Z ∓ iJp(Z)) (2.22)

are (anti-)holomorphic vectors. This implies that

TpMC = TpM
+ ⊕ TpM− , (2.23)

and hence if the almost complex manifold (M,J) has dimensionm = 2n then Jp hasm eigenvalues

+i and m eigenvalues −i. We call the elements in TpM
+ and TpM

− holomorphic and anti-

holomorphic vectors, respectively.

Let us now write two common forms of the almost complex structure. Expanding in a basis

of real vectors, we can write Jp pointwise as

Jp =

(
0 In×n

−In×n 0

)
. (2.24)

We can also diagonalise Jp by expanding in a basis of complex vector fields in TpMC:

Jp =

(
iIn×n 0

0 −iIn×n

)
. (2.25)
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We can write this more explicitly by defining ea and ēa to be basis vectors for TpMC and their

corresponding dual basis ea and ēa for the complexified cotangent space T ∗
pMC, where a = 1, . . . n.

Then we can write the complex structure as

Jp = iea ⊗ ea − iēa ⊗ ēa , (2.26)

where summation is implied as usual. This is often called the canonical form of the almost

complex structure. Note that this expansion can only be done at a point, not even in the

neighbourhood of that point! That is because the definition of the almost complex structure

does not imply J must be constant.

We will soon be discussing when we can define a complex coordinate basis za with complex

conjugates z̄a such that ea = ∂
∂za and ēa = ∂

∂z̄a and similarly for the basis of one-forms ea = dza

and ēa = dz̄a. When this is possible, we have a complex manifold.

C as a vector space

In the next note we will use the fact that C is a vector space over R. Let’s briefly review

what this means. Recall that a vector space over a field K, here R, is a set V , here

the complex numbers, subject to some axioms. The elements of V are called vectors

and elements of K are called scalars. There are two operations, addition of vectors and

multiplication of vectors by scalars which must satisfy the following axioms:

Let u, v, w ∈ V and a, b ∈ K, then

• (u + v) + w = u + (v + w) , (associativity of vector addition)

• u + v = v + u , (commutativity of vector addition)

• ∃ 0 ∈ V such that v + 0 = v , ∀ v ∈ V, (identity element of vector addition)

• ∀v ∈ V ∃−v ∈ V s.t. v + (−v) = 0, (inverse elements of vector addition)

• ∀ a , b ∈ K , a (bv) = (ab) v, (compatibility of scalar and field multiplication)

• 1v = v where 1 is the multiplicative identity of K, (identity element of scalar

multiplication)

• a (u + v) = au + av, (distributivity 1)

• (a+ b) u = au + bu, (distributivity 2)

Before we get there, let us finish this section by discussing differential forms on almost complex

manifolds.
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A digression on mathematical notation

Definition: The complexified vector space VC of a vector space V is defined

as the tensor product

VC = V ⊗R C . (2.27)

This just means that an element of the complexified vector space VC consists of a vector

v ∈ V and a complex number c ∈ C paired up as

(v, c) ∈ VC . (2.28)

You may be worried by this because it seems like multiplication by real numbers is not

well-defined. For any r ∈ R, do we multiply as

r · (v, c) = (r · v, c) , (2.29)

or

r · (v, c) = (v, r · c) ? (2.30)

We resolve this by defining the pairing above up to an equivalence relation (as is the

convention for the tensor product of any vector spaces) so that for any r ∈ R

r (v, c) ∼ (rv, c) ∼ (v, rc) . (2.31)

The fact that in the above equivalence relation r ∈ R must be real is why we labelled the

tensor product with the subscript ⊗R. We can now define complex conjugation of our

vectors as:

v ⊗ c −→ v ⊗ c̄ , ∀ v ∈ V, c ∈ C , (2.32)

where c̄ is the usual complex conjugate of c.

2.2 (p, q)-forms on almost complex manifolds

In the previous section we defined operators which project vectors onto their (anti-)holomorphic

parts. The projectors P± : TM −→ TM are rank (1,1) forms and hence endomorphisms of the

tangent bundle. This means they also have a natural action on 1-forms. In real coordinates, the

components of the projectors are real matrices P±ν
µ . They thus act on a 1-form θ = θµdx

µ as

P±θ = P±ν
µ θνdx

µ . (2.33)
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We define

θ(1,0) = P+θ , θ(0,1) = P−θ , (2.34)

which by the properties of the projection operators satisfy

θ = θ(1,0) + θ(0,1) , (2.35)

and we call them (1, 0)-forms and (0, 1)-forms, respectively.

Exercise 2.4: Let (M,J) be an almost complex manifold and let θ be a 1-form on M .

Show that

θ (Z) = 0 (2.36)

on any holomorphic vector field Z if and only if θ is a (0, 1)-form.

We can also define higher (p, q)-forms. For example, for a 2-form ω we can define

ω(2,0)
µν = P+ρ

µ P+σ
ν ωρσ , ω(1,1)

µν =
(
P+ρ
µ P−σ

ν + P−ρ
µ P+σ

ν

)
ωρσ , ω(2,0)

µν = P−ρ
µ P−σ

ν ωρσ ,

(2.37)

and these satisfy

ω = ω(2,0) + ω(1,1) + ω(0,2) . (2.38)

More generally let us denote the space of smooth p-forms on a manifold M as Ωp(M) and

the space of smooth p, q-form as Ω(p,q). We find that this can be decomposed into a sum of lower

(p, q)-forms:

Ωp (M) = ⊕pk=0Ω(p−k,k) (M) . (2.39)

2.2.1 Exterior derivatives of (p, q)-forms

Let us end this chapter by discussing the exterior derivative of (p, q)-forms. Given some (p, q)-

form ω, the exterior derivative acts as

dω = (λ1)
(p−1,q+2)

+ (λ2)
(p,q+1)

+ (λ3)
(p+1,q)

+ (λ4)
(p+2,q−1)

, (2.40)

where λ1, . . . , λ4 are some p+ q + 1-forms.
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Exercise 2.5: Show that this is true for the case where ω is a (2, 0)-form and show that

in this case

(λ1)µνρ = 2P+σ
[µ P−λ

ν P−κ
ρ] ∂λP

+τ
κ ωστ ,

(λ2)µνρ = 2ωστP
+σ
[ν

(
P+λ
µ P−κ

ρ] + P−λ
µ P+κ

ρ]

)
∂λP

+τ
κ + P−λ

[µ P+κ
ν P+σ

ρ] ∂λωκσ ,

(λ3)µνρ = P+σ
[µ P+κ

ν P+λ
ρ] ∂σωκλ ,

(λ4)µνρ = 0 .

(2.41)

Hint: Use the fact that δµ
ν = P+ν

µ + P−ν
µ .

The forms (λ2)
(p,q+1)

and (λ3)
(p+1,q)

are particularly important, as we will see in the next

chapter. Let us define the Dolbeault operators

∂ : Ω(p,q) −→ Ω(p+1,q) , ∂̄ : Ω(p,q) −→ Ω(p,q+1) , (2.42)

as

∂ω(p,q) = (λ3)
(p+1,q)

=
(
P+
)p+1 (

P−)q dω(p,q) ,

∂̄ω(p,q+1) = (λ2)
(p,q+1)

=
(
P+
)p (

P−)q+1
dω(p,q) ,

(2.43)

where we define the shorthand (P±)
p

as the operator that projects p indices onto their

(anti-)holomorphic parts. Note that the Dolbeault operators are not nilpotent, i.e. ∂2 6= 0 and

∂̄2 6= 0.

In the next chapter, we will see that for complex manifolds d = ∂ + ∂̄ and that ∂ and ∂̄ are

nilpotent.
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